Overview of product candidate ACU193 and the ongoing Phase-1 INTERCEPT-AD trial

November 2021
FORWARD-LOOKING STATEMENTS AND NOTES REGARDING THIS PRESENTATION

This presentation may contain forward-looking statements within the meaning of The Private Securities Litigation Reform Act of 1995. Any statement describing Acumen’s goals, expectations, financial or other projections, intentions or beliefs is a forward-looking statement and should be considered an at-risk statement. Words such as “believes,” “expects,” “anticipates,” “could,” “would,” “seeks,” “aims,” “plans,” “potential”, “will” and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Forward-looking statements include statements concerning Acumen’s business and the therapeutic potential of Acumen’s product candidate, ACU193, including its potential for improved safety and efficacy as compared to other monoclonal antibodies in development, as well as the expectations concerning the INTERCEPT-AD trial. These statements are based upon the current beliefs and expectations of Acumen management, and are subject to certain factors, risks and uncertainties, particularly those inherent in the process of discovering, developing and commercializing safe and effective human therapeutics. Such risks may be amplified by the impacts of the COVID-19 pandemic.

These and other risks concerning Acumen’s programs are described in additional detail in Acumen’s filings with the Securities and Exchange Commission (“SEC”), including in Acumen’s Quarterly Report on Form 10-Q for the quarter ended June 30, 2021, filed with the SEC on August 16, 2021, which is available on the SEC’s website at www.sec.gov. Copies of these and other documents are available from Acumen. Additional information will be made available in other filings that Acumen makes from time to time with the SEC. These forward-looking statements speak only as of the date hereof, and Acumen expressly disclaims any obligation to update or revise any forward-looking statement, except as otherwise required by law, whether, as a result of new information, future events or otherwise.

This presentation discusses Acumen’s investigational drug ACU193 that is in an early Phase 1 First in Humans clinical study. ACU193 has not been approved for marketing by the U.S. Food and Drug Administration or any regulatory authority.

Certain information contained in this presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and Acumen’s own internal estimates and research. While Acumen believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of any information obtained from third-party sources. In addition, all of the market data included in this presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, while we believe our own internal research is reliable, such research has not been verified by any independent source.
Quaternary structures of Aβ Oligomers, protofibrils and fibrils

AβOs may consist of 2 to >200 Aβ peptides.

Relini et al. Misfolding of amyloidogenic proteins and their interactions with membranes Biomolecules 2014

Figure 3. Atomic force microscopy images of representative steps of amyloid aggregation: (A) oligomers; (B) protofibrils; (C) mature fibrils. Scan size 1.0 μm. Z range (A) 8.0 nm; (B) 15 nm; (C) 20 nm.
ACU193 is the first mAb developed to selectively target AβOs

Highly selective for Aβ oligomers versus Aβ monomers

ACU193 Selectivity

![Graph showing ACU193 selectivity](image)

Binding of ACU193 to AβOs >500x binding to Aβ monomer

ACU193 Selectivity in presence of 5μM monomeric Aβ

![Graph showing ACU193 selectivity in presence of 5μM monomeric Aβ](image)

Even in the presence of a large excess of Aβ monomer, binding of ACU193 to AβOs is unchanged

ACU193 selective binding to AβOs is preserved even in the presence of a large excess of Aβ monomer

Data On File
ACU193 is highly selective for AβOs versus Aβ plaques

ACU193 staining in human AD brain slices from hippocampus:

ACU193 (red) binds non-Thioflavin S positive Aβ (green)

ACU193 has limited to no binding to thioflavin S positive fibrillar Aβ plaque in human AD brain tissue

AβOs bind to neurons and are toxic; the murine IgG1 parent of ACU193 (ACU3B3) prevents toxicity

After binding to neurons, AβOs disrupt Long Term Potentiation (LTP) and cause pathologic increases in intracellular calcium that is destructive to cells.

ACU3B3 prevents AβO inhibition of hippocampal LTP ex vivo

Data on File and

ACU3B3 prevents AβO mediated Ca2+ elevation in cell cultures

ACU3B3 prevents aberrant neuronal activity caused by AβOs and prevents AβO mediated disruption of calcium homeostasis in neuronal cultures
Treatment of a transgenic mouse model of AD results in reduction of behavioral deficits

Murine parent of ACU193 (3B3) was used to treat younger mice with depositing plaque or older mice with abundant plaque

Open Field

- Deficits in younger (5-7 months) transgenic mice are markedly reduced with treatment

Morris Water Maze

- Deficits in older (9-10 months) transgenic mice are markedly reduced with treatment

Open field total distance measurement, APP-Veh vs. APP-3B3, \(^*p=0.029\).

MWM swim speed abnormality (\(^{**}p<0.02\)).
Phase 1 overview

TRIAL DESIGN: Randomized Placebo Controlled Phase 1
- Part A: Single-Ascending Dose
- Part B: Multiple-Ascending Doses

ENROLLMENT CRITERIA: Early AD
- Mild Cognitive Impairment and Mild Dementia due to AD (amyloid positive by PET)

TRIAL OBJECTIVES: Proof of Mechanism (PoM)
- Safety and tolerability
- Pharmacokinetics
- Target Engagement
- Exploratory cognition and biomarkers
Randomized Placebo Controlled Phase 1 in Early AD patients: INTERCEPT-AD

PART A:
SINGLE-ASCENDING DOSE
n = 8 per cohort (32 total)

COHORT 1:
2 mg/kg ACU193 or Placebo

COHORT 2:
10 mg/kg ACU193 or Placebo

COHORT 3:
25 mg/kg ACU193 or Placebo

COHORT 4:
60 mg/kg ACU193 or Placebo

≥ 1wk

PART B:
MULTIPLE-ASCENDING DOSE
n = 10 per cohort (30 total)

COHORT 5:
10 mg/kg ACU193 or Placebo (Q4W)

COHORT 6:
60 mg/kg ACU193 or Placebo (Q4W)

COHORT 7:
60 mg/kg ACU193 or Placebo (Q2W)

≥ 1wk

≥ 4wk

NCT04931459
Cogstate computerized test battery

<table>
<thead>
<tr>
<th>Test</th>
<th>Domains tested</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>International shopping list test (immediate)</td>
<td>Immediate recall</td>
<td>5</td>
</tr>
<tr>
<td>Cogstate brief battery</td>
<td>Attention, working memory, learning</td>
<td>15</td>
</tr>
<tr>
<td>International shopping list test (delayed)</td>
<td>Delayed recall</td>
<td>1</td>
</tr>
<tr>
<td>Groton maze learning test</td>
<td>Executive function</td>
<td>7</td>
</tr>
<tr>
<td>International digit-symbol substitution test</td>
<td>Processing speed</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>
Arterial Spin Labelling (ASL) as an MRI outcome

MCI patients show hypoperfusion in parietal cortex, precuneus, posterior cingulate cortex and medial temporal lobe.

AD patients show global hypoperfusion, but especially cingulate, precuneus, parietal lobes and inferior frontal regions.

Perfusion correlates with several neuropsychological tests.

Hypoperfusion can be improved in middle and posterior cingulate cortex with cholinesterase inhibitors and was associated with improvement in ADAS-cog scores.

Fig. 1. Processed CBF images measured with ASL of a young and an old healthy control from our database. The top row images are from a 32 year-old woman, and the bottom row images are from an 80 year-old man. The reduction of CBF can be readily observed in widespread brain areas of the older subject compared with the younger subject.

Acumen believes additional literature supports use of ASL to assess hypoperfusion in AD:

- MCI patients show hypoperfusion in parietal cortex, precuneus, posterior cingulate cortex and medial temporal lobe.
- AD patients show global hypoperfusion, but especially cingulate, precuneus, parietal lobes and inferior frontal regions.
- Perfusion correlates with several neuropsychological tests.
- Hypoperfusion can be improved in middle and posterior cingulate cortex with cholinesterase inhibitors and was associated with improvement in ADAS-cog scores.

Lower cerebral perfusion is associated with tau-PET in the entorhinal cortex across the Alzheimer’s continuum

Anna Rubinskia, Duygu Tosunb, Nicolai Franzmeiera, Julia Neitzela, Lukas Frontzkowskia, Michael Weinerb, Michael Ewersa,c,*

*Neurobiology of Aging 102 (2021) 111–118

Fig. 2. Higher tau-PET is associated with lower CBF in the entorhinal cortex (Braak stage I).
Summary

- Non-clinical data consistent with toxicity of Aβ oligomers and selective binding of ACU193 to Aβ oligomers
- Enrollment in a Phase 1 study assessing safety and target engagement is ongoing
- Although unlikely with this small sample size, the possibility of improvement in cognition and cerebral blood flow will also be assessed as exploratory outcomes in the Phase 1 study
Thank you!

- Study participants and study partners
- ACU-001 sites
- Acumen collaborators